Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654135

RESUMO

Solar-driven photocatalytic reactions offer a promising route to clean and sustainable energy, and the spatial separation of photogenerated charges on the photocatalyst surface is the key to determining photocatalytic efficiency. However, probing the charge-separation properties of photocatalysts is a formidable challenge because of the spatially heterogeneous microstructures, complicated charge-separation mechanisms and lack of sensitivity for detecting the low density of separated photogenerated charges. Recently, we developed surface photovoltage microscopy (SPVM) with high spatial and energy resolution that enables the direct mapping of surface-charge distributions and quantitative assessment of the charge-separation properties of photocatalysts at the nanoscale, potentially providing unprecedented insights into photocatalytic charge-separation processes. Here, this protocol presents detailed procedures that enable researchers to construct the SPVM instruments by integrating Kelvin probe force microscopy with an illumination system and the modulated surface photovoltage (SPV) approach. It then describes in detail how to perform SPVM measurements on actual photocatalyst particles, including sample preparation, tuning of the microscope, adjustment of the illuminated light path, acquisition of SPVM images and measurements of spatially resolved modulated SPV signals. Moreover, the protocol also includes sophisticated data analysis that can guide non-experts in understanding the microscopic charge-separation mechanisms. The measurements are ordinarily performed on photocatalysts with a conducting substrate in gases or vacuum and can be completed in 15 h.

2.
Natl Sci Rev ; 10(9): nwad166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565210

RESUMO

Understanding how applied voltage drives the electrocatalytic reaction at the nanoscale is a fundamental scientific problem, particularly in non-metallic electrocatalysts, due to their low intrinsic carrier concentration. Herein, using monolayer molybdenum disulfide (MoS2) as a model system of non-metallic catalyst, the potential drops across the basal plane of MoS2 (ΔVsem) and the electric double layer (ΔVedl) are decoupled quantitatively as a function of applied voltage through in-situ surface potential microscopy. We visualize the evolution of the band structure under liquid conditions and clarify the process of EF keeping moving deep into Ec, revealing the formation process of the electrolyte gating effect. Additionally, electron transfer (ET) imaging reveals that the basal plane exhibits high ET activity, consistent with the results of surface potential measurements. The potential-dependent behavior of kf and ns in the ET reaction are further decoupled based on the measurements of ΔVsem and ΔVedl. Comparing the ET and hydrogen evolution reaction imaging results suggests that the low electrocatalytic activity of the basal plane is mainly due to the absence of active sites, rather than its electron transfer ability. This study fills an experimental gap in exploring driving forces for electrocatalysis at the nanoscale and addresses the long-standing issue of the inability to decouple charge transfer from catalytic processes.

3.
Angew Chem Int Ed Engl ; 62(21): e202302575, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36959093

RESUMO

The interfacial barrier of charge transfer from semiconductors to cocatalysts means that the photogenerated charges cannot be fully utilized, especially for the challenging water oxidation reaction. Using cobalt cubane molecules (Co4 O4 ) as water oxidation cocatalysts, we rationally assembled partially oxidized graphene (pGO), acting as a charge-transfer mediator, on the hole-accumulating {-101} facets of lead chromate (PbCrO4 ) crystal. The assembled pGO enables preferable immobilization of Co4 O4 molecules on the {-101} facets of the PbCrO4 crystal, which is favorable for the photogenerated holes transferring from PbCrO4 to Co4 O4 molecules. The surface charge-transfer efficiency of PbCrO4 was boosted by selective assembly of pGO between PbCrO4 and Co4 O4 molecules. An apparent quantum efficiency for photocatalytic water oxidation on the Co4 O4 /pGO/PbCrO4 photocatalyst exceeded 10 % at 500 nm. This strategy of rationally assembling charge-transfer mediator provides a feasible method for acceleration of charge transfer and utilization in semiconductor photocatalysis.

4.
Nature ; 610(7931): 296-301, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224420

RESUMO

The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production1-4. Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency5; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds6-8. Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques9-11, and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy12,13, spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift-diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts.

5.
Angew Chem Int Ed Engl ; 61(37): e202207161, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35716112

RESUMO

A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4 ) as an example, we conducted the morphology tailoring from parallelepiped (p-PbCrO4 ) to truncated decahedron (t-PbCrO4 ) and elongated rhombic (r-PbCrO4 ), resulting in exposed anisotropic facets. The spatial separation of photogenerated charges closely correlates to the anisotropic facets of crystals, which can only be realized for t-PbCrO4 and r-PbCrO4 . The charge-separation efficiencies exhibit a quasilinear relation with the surface photovoltage difference between anisotropic facets. The r-PbCrO4 gives an apparent quantum efficiency of 6.5 % at 500 nm for photocatalytic water oxidation using Fe3+ ions as electron acceptors. Moreover, the oxidation reverse reaction from Fe2+ to Fe3+ ions was completely blocked with ∼100 % of Fe3+ conversion achieved on the anisotropic PbCrO4 crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...